=PrL

Subtyping and Generics

Principles of Functional Programming

Polymorphism

Two principal forms of polymorphism:

> subtyping
P generics

In this session we will look at their interactions.

Two main areas:

» bounds
» variance

Type Bounds

Consider the method assertAllPos which

P> takes an IntSet
> returns the IntSet itself if all its elements are positive
P throws an exception otherwise

What would be the best type you can give to assertAllPos? Maybe:

Type Bounds

Consider the method assertAllPos which

P> takes an IntSet
> returns the IntSet itself if all its elements are positive
P throws an exception otherwise

What would be the best type you can give to assertAllPos? Maybe:
def assertAllPos(s: IntSet): IntSet

In most situations this is fine, but can one be more precise?

Type Bounds

One might want to express that assertAllPos takes Empty sets to Empty
sets and NonEmpty sets to NonEmpty sets.

A way to express this is:

def assertAllPos[S <: IntSet](r: S): S = ...

Here, “<: IntSet” is an upper bound of the type parameter S:
It means that S can be instantiated only to types that conform to IntSet.

Generally, the notation

> S <: T means: S is a subtype of T, and
> S >: T means: S is a supertype of T, or T is a subtype of S.

Lower Bounds

You can also use a lower bound for a type variable.
Example
[S >: NonEmpty]

introduces a type parameter S that can range only over supertypes of
NonEmpty.
So s could be one of NonEmpty, IntSet, AnyRef, or Any.

We will see later on in this session where lower bounds are useful.

Mixed Bounds

Finally, it is also possible to mix a lower bound with an upper bound.

For instance,
[S >: NonEmpty <: IntSet]

would restrict S any type on the interval between NonEmpty and IntSet.

Covariance

There's another interaction between subtyping and type parameters we
need to consider. Given:

NonEmpty <: IntSet

List[NonEmpty] <: List[IntSet] ?

Covariance

There's another interaction between subtyping and type parameters we
need to consider. Given:

NonEmpty <: IntSet

List[NonEmpty] <: List[IntSet] ?

Intuitively, this makes sense: A list of non-empty sets is a special case of a
list of arbitrary sets.

We call types for which this relationship holds covariant because their
subtyping relationship varies with the type parameter.

Does covariance make sense for all types, not just for List?

Arrays

For perspective, let's look at arrays in Java (and C#).

Reminder:

> An array of T elements is written T[] in Java.
» In Scala we use parameterized type syntax Array[T] to refer to the
same type.

Arrays in Java are covariant, so one would have:

NonEmpty[] <: IntSet[]

Array Typing Problem

But covariant array typing causes problems.
To see why, consider the Java code below.

NonEmpty[] a = new NonEmpty[1{
new NonEmpty (1, new Empty(), new Empty())};
IntSet[] b = a;
b[@] = new Empty();
NonEmpty s = al[0@];

It looks like we assigned in the last line an Empty set to a variable of type
NonEmpty!

What went wrong?

The Liskov Substitution Principle

The following principle, stated by Barbara Liskov, tells us when a type can
be a subtype of another.
If A <: B, then everything one can to do with a value of type B
one should also be able to do with a value of type A.

[The actual definition Liskov used is a bit more formal. It says:
Let q(x) be a property provable about objects x of type B. Then
q(y) should be provable for objects y of type A where A <: B.

Exercise

The problematic array example would be written as follows in Scala:

val a: Array[NonEmpty] = Array(NonEmpty(1, Empty(), Empty()))
val b: Array[IntSet] = a

b(0) = Empty()

val s: NonEmpty = a(0@)

When you try out this example, what do you observe?

0 A type error in line 1

A type error in line 2

A type error in line 3

A type error in line 4

A program that compiles and throws an exception at run-time
A program that compiles and runs without exception

O O O O o

Exercise

The problematic array example would be written as follows in Scala:

val a: Array[NonEmpty] = Array(NonEmpty(1, Empty(), Empty()))
val b: Array[IntSet] = a

b(0) = Empty()

val s: NonEmpty = a(0@)

When you try out this example, what do you observe?

0 A type error in line 1

A type error in line 2

A type error in line 3

A type error in line 4

A program that compiles and throws an exception at run-time
A program that compiles and runs without exception

O O O O o

=PrL

Tuples and Generic Methods

Principles of Functional Programming

Sorting Lists Faster

As a non-trivial example, let's design a function to sort lists that is more
efficient than insertion sort.

A good algorithm for this is merge sort. The idea is as follows:
If the list consists of zero or one elements, it is already sorted.

Otherwise,

> Separate the list into two sub-lists, each containing around half of the
elements of the original list.

> Sort the two sub-lists.

> Merge the two sorted sub-lists into a single sorted list.

First MergeSort Implementation

Here is the implementation of that algorithm in Scala:

def msort(xs: List[Int]): List[Int] =
val n = xs.length / 2
if n == 0 then xs
else
def merge(xs: List[Int], ys: List[Int]) = 2?7
val (fst, snd) = xs.splitAt(n)
merge(msort(fst), msort(snd))

The SplitAt Function

The splitAt function on lists returns two sublists

» the elements up the the given index
» the elements from that index

The lists are returned in a pair.

Detour: Pair and Tuples

The pair consisting of x and y is written (x, y) in Scala.
Example

val pair = (“answer”, 42) > pair: (String, Int) = (answer,42)
The type of pair above is (String, Int).
Pairs can also be used as patterns:

val (label, value) = pair > label : String = answer
| value : Int = 42

This works analogously for tuples with more than two elements.

Translation of Tuples

For small (x) n, the tuple type (Ty,...,T,) is an abbreviation of the
parameterized type
scala.Tuplen[Ty, ..., T]

A tuple expression (ey, ..., e,) is equivalent to the function application
scala.Tuplen(ey, ..., e,)
A tuple pattern (py, ..., pn) is equivalent to the constructor pattern

scala.Tuplen(p1 5 eeey pn)

(x) Currently, “small” = up to 22. There's also a TupleXXL class that
handles Tuples larger than that limit.

The Tuple class

Here, all Tuplen classes are modeled after the following pattern:

case class Tuple2[T1, T21(_1: +T1, _2: +T2) {
override def toString = 7(” + _1 + 7,7 + _2 +7)”

b

The fields of a tuple can be accessed with names _1, _2, ..

So instead of the pattern binding
val (label, value) = pair
one could also have written:

val label = pair._1
val value = pair._2

But the pattern matching form is generally preferred.

Definition of Merge

Here is a definition of the merge function:

def merge(xs: List[Int], ys: List[Int]) = (xs, ys) match
case (Nil, ys) => ys
case (xs, Nil) => xs
case (x :: xs1, y :: ysl) =>
if x <y then x :: merge(xsl, ys)
else y :: merge(xs, ysl)

Making Sort more General
Problem: How to parameterize msort so that it can also be used for lists
with elements other than Int?
def msort[T](xs: List[T]): List[T] = ?7??

does not work, because the comparison < in merge is not defined for
arbitrary types T.

Idea: Parameterize merge with the necessary comparison function.

Parameterization of Sort
The most flexible design is to make the function sort polymorphic and to
pass the comparison operation as an additional parameter:

def msort[T1(xs: List[T])(1t: (T, T) => Boolean)| =

merge(msort(fst) (1t), msort(snd)(1t))
Merge then needs to be adapted as follows:

def merge(xs: List[T], ys: List[T]) = (xs, ys) match

case (x :: xs1, y :: ysl) =>
if 1t(x, y) then ...
else ...

Calling Parameterized Sort

We can now call msort as follows:

val xs = List(-5, 6, 3, 2, 7)
val fruits = List(”apple”, ”pear”, ”orange”, ”pineapple”)

msort(xs) ((x: Int, y: Int) => x <y)
msort(fruits) ((x: String, y: String) => x.compareTo(y) < 0)

Or, since parameter types can be inferred from the call msort(xs):

msort(xs)((x, y) => x <y)

=PrL

Variance

Principles of Functional Programming

Variance

You have seen the the previous session that some types should be
covariant whereas others should not.

Roughly speaking, a type that accepts mutations of its elements should
not be covariant.

But immutable types can be covariant, if some conditions on methods are
met.

Definition of Variance

Say C[T] is a parameterized type and A, B are types such that A <: B.
In general, there are three possible relationships between C[A] and C[BI:

C[A] <: C[B] C is covariant
C[A] >: C[B] C is contravariant
neither C[A] nor C[B] is a subtype of the other C is nonvariant

Definition of Variance

Say C[T] is a parameterized type and A, B are types such that A <: B.

In general, there are three possible relationships between C[A] and C[BI:

C[A] <: C[B] C is covariant
C[A] >: C[B] C is contravariant
neither C[A] nor C[B] is a subtype of the other C is nonvariant

Scala lets you declare the variance of a type by annotating the type

parameter:
class C[+A] { ... } C is covariant
class C[-A] { ... } C is contravariant

class C[AT { ... } C is nonvariant

Exercise

Assume the following type hierarchy and two function types:

trait Fruit
class Apple extends Fruit
class Orange extends Fruit

type A = Fruit => Orange
type B = Apple => Fruit

According to the Liskov Substitution Principle, which of the following
should be true?

0 A<:B
0 B <: A
0 A and B are unrelated.

Exercise

Assume the following type hierarchy and two function types:

trait Fruit
class Apple extends Fruit
class Orange extends Fruit

type A = Fruit => Orange
type B = Apple => Fruit

According to the Liskov Substitution Principle, which of the following
should be true?

0 A<:B
0 B <: A
0 A and B are unrelated.

Exercise

Assume the following type hierarchy and two function types:

trait Fruit
class Apple extends Fruit
class Orange extends Fruit

type A = Fruit => Orange
type B = Apple => Fruit

According to the Liskov Substitution Principle, which of the following
should be true?

X A<: B
B <: A
0 A and B are unrelated.

o

Typing Rules for Functions

Generally, we have the following rule for subtyping between function types:

If A2 <: A1 and B1 <: B2, then

Al => B1 <: A2 => B2

Function Trait Declaration

So functions are contravariant in their argument type(s) and covariant in
their result type.

This leads to the following revised definition of the Function1 trait:
package scala

trait Function1[-T, +U] {
def apply(x: T): U

Variance Checks

We have seen in the array example that the combination of covariance
with certain operations is unsound.

In this case the problematic operation was the update operation on an
array.

If we turn Array into a class, and update into a method, it would look like
this:

class Array[+T] {
def update(x: T) = ...
)

The problematic combination is

P the covariant type parameter T
» which appears in parameter position of the method update.

Variance Checks (2)

The Scala compiler will check that there are no problematic combinations
when compiling a class with variance annotations.

Roughly,
» covariant type parameters can only appear in method results.

P contravariant type parameters can only appear in method parameters.
» invariant type parameters can appear anywhere.

The precise rules are a bit more involved, fortunately the Scala compiler
performs them for us.

Variance-Checking the Function Trait

Let's have a look again at Functionl:

trait Function1[-T, +U]
def apply(x: T): U

Here,

P T is contravariant and appears only as a method parameter type
P U is covariant and appears only as a method result type

So the method is checks out OK.

Variance and Lists

Let's get back to the previous implementation of lists.

One shortcoming was that Nil had to be a class, whereas we would prefer
it to be an object (after all, there is only one empty list).

Can we change that?

Yes, because we can make List covariant.

Variance and Lists

Let's get back to the previous implementation of lists.

One shortcoming was that Nil had to be a class, whereas we would prefer
it to be an object (after all, there is only one empty list).

Can we change that?
Yes, because we can make List covariant.

Here are the essential modifications:

trait List[+T]

object Empty extends List[Nothing]

Making Classes Covariant

Sometimes, we have to put in a bit of work to make a class covariant.

Consider adding a prepend method to List which prepends a given
element, yielding a new list.

A first implementation of prepend could look like this:

trait List[+T]
def prepend(elem: T): List[T] = Node(elem, this)

But that does not work!

Exercise

Why does the following code not type-check?

trait List[+T]
def prepend(elem: T): List[T] = Node(elem, this)

Possible answers:
0 prepend turns List into a mutable class.

0 prepend fails variance checking.

0 prepend’s right-hand side contains a type error.

Exercise

Why does the following code not type-check?

trait List[+T]
def prepend(elem: T): List[T] = Node(elem, this)

Possible answers:
0 prepend turns List into a mutable class.

0 prepend fails variance checking.

0 prepend’s right-hand side contains a type error.

Prepend Violates LSP

Indeed, the compiler is right to throw out List with prepend, because it
violates the Liskov Substitution Principle:

Here's something one can do with a list xs of type List[Fruit]:
xs.prepend(Orange)

But the same operation on a list ys of type List[Apple] would lead to a
type error:

ys.prepend(Apple)
* type mismatch
required: Apple
found : Orange

So, List[Apple] cannot be a subtype of List[Fruit].

Lower Bounds

But prepend is a natural method to have on immutable lists!

Q: How can we make it variance-correct?

Lower Bounds

But prepend is a natural method to have on immutable lists!
@: How can we make it variance-correct?
We can use a lower bound:
def prepend [U >: T] (elem: U): List[U] = Node(elem, this)
This passes variance checks, because:

» covariant type parameters may appear in lower bounds of method
type parameters
» contravariant type parameters may appear in upper bounds.

Exercise

Assume prepend in trait List is implemented like this:
def prepend [U >: T] (elem: U): List[U] = Node(elem, this)
What is the result type of this function:

def f(xs: List[Applel, x: Orange) = xs.prepend(x) ?

Possible answers:

0 does not type check
0 List[Apple]

0 List[Orange]

0 List[Fruit]

0 List[Any]

Exercise

Assume prepend in trait List is implemented like this:
def prepend [U >: T] (elem: U): List[U] = Node(elem, this)
What is the result type of this function:

def f(xs: List[Applel, x: Orange) = xs.prepend(x) ?

Possible answers:

0 does not type check
0 List[Apple]

0 List[Orange]

0 List[Fruit]

0 List[Any]

Exercise

Assume prepend in trait List is implemented like this:
def prepend [U >: T] (elem: U): List[U] = Node(elem, this)
What is the result type of this function:

def f(xs: List[Applel, x: Orange) = xs.prepend(x) ?

Possible answers:

0 does not type check
0 List[Apple]

0 List[Orange]

X List[Fruit]

0 List[Any]

=PrL

Other Collections

Principles of Functional Programming

Other Sequences

We have seen that lists are linear: Access to the first element is much
faster than access to the middle or end of a list.

The Scala library also defines an alternative sequence implementation,
Vector.

This one has more evenly balanced access patterns than List.

Operations on Vectors

Vectors are created analogously to lists:

val nums = Vector(l, 2, 3, -88)

val people = Vector(”Bob”, ”James”, ”Peter”)
They support the same operations as lists, with the exception of ::
Instead of x :: xs, thereis

x +: xs Create a new vector with leading element x, followed
by all elements of xs.

xs :+ x Create a new vector with trailing element x, preceded
by all elements of xs.

(Note that the : always points to the sequence.)

Collection Hierarchy

A common base class of List and Vector is Seq, the class of all sequences.

Seq itself is a subclass of Iterable.

Iterable

/ \
Array List Vector

Arrays and Strings

Arrays and Strings support the same operations as Seq and can implicitly
be converted to sequences where needed.

(They cannot be subclasses of Seq because they come from Java)

val xs: Array[Int] = Array(1, 2, 3)
xs.map(x => 2 * Xx)

val ys: String = ”Hello world!”
ys.filter(_.isUpper)

Ranges

Another simple kind of sequence is the range.
It represents a sequence of evenly spaced integers.
Three operators:

to (inclusive), until (exclusive), by (to determine step value):

val r: Range = 1 until 5
val s: Range = 1 to 5

1 to 10 by 3

6 to 1 by -2

A Range is represented as a single object with three fields: lower bound,
upper bound, step value.

Some more Sequence Operations:

XS.

XS.

XS

XS.

XS.

XS.

XS.

XS.

XS.

exists(p)

forall(p)

.zip(ys)

unzip
flatMap(f)
sum
product

max

min

true if there is an element x of xs such that p(x) holds,
false otherwise.

true if p(x) holds for all elements x of xs, false other-
wise.

A sequence of pairs drawn from corresponding elements
of sequences xs and ys.

Splits a sequence of pairs xs into two sequences consist-
ing of the first, respectively second halves of all pairs.
Applies collection-valued function f to all elements of
xs and concatenates the results

The sum of all elements of this numeric collection.
The product of all elements of this numeric collection
The maximum of all elements of this collection (an
Ordering must exist)

The minimum of all elements of this collection

Example: Combinations

To list all combinations of numbers x and y where x is drawn from 1. .M
and y is drawn from 1. .N:

(1 to M).flatMap(x =>

Example: Combinations

To list all combinations of numbers x and y where x is drawn from 1. .M
and y is drawn from 1. .N:

(1 to M).flatMap(x => (1 to N).map(y => (x, y)))

Example: Scalar Product

To compute the scalar product of two vectors:

def scalarProduct(xs: Vector[Double], ys: Vector[Doublel]): Double =
xs.zip(ys).map(xy => xy._1 * xy._2).sum

Example: Scalar Product

To compute the scalar product of two vectors:

def scalarProduct(xs: Vector[Double], ys: Vector[Doublel]): Double =
xs.zip(ys).map(xy => xy._1 * xy._2).sum

An alternative way to write this is with a pattern matching function value.

def scalarProduct(xs: Vector[Double], ys: Vector[Double]): Double =
xs.zip(ys).map { case (x, y) => x * y }.sum

Generally, the function value
{ case p1 => el ... case pn => en }
is equivalent to

x => x match { case pl => el ... case pn => en }

Example: Scalar Product

For simple tuple decomposition, the case prefix in the pattern can be

omitted.

So, the previous code can be simplified to:

def scalarProduct(xs: Vector[Double], ys:

xs.zip(ys).map((x, y) => x * y).sum

Or, even simpler

def scalarProduct(xs: Vector[Double], ys:

xs.zip(ys).map(_ * _).sum

Vector[Double]): Double

Vector[Double]): Double

Exercise:

A number n is prime if the only divisors of n are 1 and n itself.

What is a high-level way to write a test for primality of numbers? For
once, value conciseness over efficiency.

def isPrime(n: Int): Boolean = ?77?

Exercise:

A number n is prime if the only divisors of n are 1 and n itself.

What is a high-level way to write a test for primality of numbers? For
once, value conciseness over efficiency.

def isPrime(n: Int): Boolean =
(2 ton - 1).forall(d => n % d == 0)

=PrL

Combinatorial Search and For-Expressions

Principles of Functional Programming

Handling Nested Sequences

We can extend the usage of higher order functions on sequences to many
calculations which are usually expressed using nested loops.

Example: Given a positive integer n, find all pairs of positive integers i
and j, with 1 <= j < i < nsuch thati + jis prime.

For example, if n = 7, the sought pairs are

Algorithm

A natural way to do this is to:

P> Generate the sequence of all pairs of integers (i, j) such that 1 <= j
<1i<n.

> Filter the pairs for which i + j is prime.
One natural way to generate the sequence of pairs is to:

» Generate all the integers i between 1 and n (excluded).
» For each integer i, generate the list of pairs (i, 1), ..., (i, i-1).

This can be achieved by combining until and map:

(1 until n).map(i =>
(1 until i).map(j => (i, 1))

Generate Pairs

The previous step gave a sequence of sequences, let's call it xss.

We can combine all the sub-sequences using foldrRight with ++:
xss.foldRight(SeqlInt]1())(_ ++ _)

Or, equivalently, we use the built-in method flatten
xss.flatten

This gives:

((1 until n).map(i =>
(1 until i).map(j => (i, 3)))).flatten

Generate Pairs (2)

Here's a useful law:
xs.flatMap(f) = xs.map(f).flatten
Hence, the above expression can be simplified to

(1 until n).flatMap(i =>
(1 until i).map(j => (1, 3)))

Assembling the pieces

By reassembling the pieces, we obtain the following expression:

(1 until n)
.flatMap(i => (1 until i).map(j => (i, J)))
filter((x, y) => isPrime(x + y))

This works, but makes most people's head hurt.

Is there a simpler way?

For-Expressions

Higher-order functions such as map, flatMap or filter provide powerful
constructs for manipulating lists.

But sometimes the level of abstraction required by these function make
the program difficult to understand.

In this case, Scala's for expression notation can help.

For-Expression Example

Let persons be a list of elements of class Person, with fields name and age.
case class Person(name: String, age: Int)
To obtain the names of persons over 20 years old, you can write:

for p <- persons if p.age > 20
yield p.name

which is equivalent to:

persons
.filter(p => p.age > 20)
.map(p => p.name)

The for-expression is similar to loops in imperative languages, except that
it builds a list of the results of all iterations.

Syntax of For

A for-expression is of the form
for s yield e

where s is a sequence of generators and filters, and e is an expression
whose value is returned by an iteration.

> A generator is of the form p <- e, where p is a pattern and e an
expression whose value is a collection.

> A filter is of the form if f where f is a boolean expression.

P> The sequence must start with a generator.

> If there are several generators in the sequence, the last generators
vary faster than the first.

Use of For

Here are two examples which were previously solved with higher-order
functions:

Given a positive integer n, find all the pairs of positive integers (i, j)
such that 1 <= j <i < n,and i + jis prime.

for
i <= 1 until n
j <= 1 until i
if isPrime(i + j)
yield (i, j)

Exercise

Write a version of scalarProduct (see last session) that makes use of a for:

def scalarProduct(xs: List[Double], ys: List[Double]) : Double =

Exercise

Write a version of scalarProduct (see last session) that makes use of a for:

def scalarProduct(xs: List[Double], ys: List[Double]) : Double =

(for ((x, y) <- xs.zip(ys)) yield x * y).sum

=PrL

Combinatorial Search Example

Principles of Functional Programming

Sets

Sets are another basic abstraction in the Scala collections.

A set is written analogously to a sequence:

val fruit = Set(”apple”, ”banana”, ”pear”)
val s = (1 to 6).toSet

Most operations on sequences are also available on sets:

s.map(_ + 2)
fruit.filter(_.startsWith(”app”))
S.nonEmpty

(see Iterables Scaladoc for a list of all supported operations)

Sets vs Sequences

The principal differences between sets and sequences are:

1. Sets are unordered; the elements of a set do not have a predefined order
in which they appear in the set

2. sets do not have duplicate elements:
s.map(_ / 2) // Set(2, o0, 3, 1)
3. The fundamental operation on sets is contains:

s.contains(5) // true

Example: N-Queens

The eight queens problem is to place eight queens on a chessboard so that
no queen is threatened by another.

» In other words, there can’t be two queens in the same row, column,
or diagonal.

We now develop a solution for a chessboard of any size, not just 8.
One way to solve the problem is to place a queen on each row.

Once we have placed k - 1 queens, one must place the kth queen in a
column where it's not “in check” with any other queen on the board.

Algorithm

We can solve this problem with a recursive algorithm:

» Suppose that we have already generated all the solutions consisting of
placing k-1 queens on a board of size n.

» Each solution is represented by a list (of length k-1) containing the
numbers of columns (between @ and n-1).

» The column number of the queen in the k-1th row comes first in the
list, followed by the column number of the queen in row k-2, etc.

P> The solution set is thus represented as a set of lists, with one element
for each solution.

» Now, to place the kth queen, we generate all possible extensions of
each solution preceded by a new queen:

Implementation

def queens(n: Int) =
def placeQueens(k: Int): Set[List[Int]] =
if k == 0 then Set(List())
else
for
queens <- placeQueens(k - 1)
col <= 0 until n
if isSafe(col, queens)
yield col :: queens
placeQueens(n)

Exercise

Write a function
def isSafe(col: Int, queens: List[Int]): Boolean

which tests if a queen placed in an indicated column col is secure amongst
the other placed queens.

It is assumed that the new queen is placed in the next available row after
the other placed queens (in other words: in row queens.length).

=PrL

Maps

Principles of Functional Programming

Map

Another fundamental collection type is the map.

A map of type Map[Key, Value] is a data structure that associates keys of
type Key with values of type Value.

Examples:

val romanNumerals = Map(”I” -> 1, ”V” -> 5 7”X” -> 10)
val capitalOfCountry = Map(”US” -> ”Washington”, ”Switzerland” -> ”Bern”)

Maps are lterables

Class Map[Key, Value] extends the collection type
Iterable[(Key, Value)].

Therefore, maps support the same collection operations as other iterables
do. Example:

val countryOfCapital = capitalOfCountry.map((x, y) => (y, X))
// Map(”Washington” -> ”US”, ”Bern” -> ”Switzerland”)

Note that maps extend iterables of key/value pairs.

In fact, the syntax key -> value is just an alternative way to write the pair
(key, value).

Maps are Functions

Class Map[Key, Value] also extends the function type Key => Value, so
maps can be used everywhere functions can.

In particular, maps can be applied to key arguments:

capitalOfCountry(”US”) // ”Washington”

Querying Map

Applying a map to a non-existing key gives an error:

capitalOfCountry(”Andorra”)
// java.util.NoSuchElementException: key not found: Andorra

To query a map without knowing beforehand whether it contains a given
key, you can use the get operation:

capitalOfCountry.get(”US”) // Some(”Washington”)
capitalOfCountry.get(”Andorra”) // None

The result of a get operation is an Option value.

The Option Type

The Option type is defined as:

trait Option[+A]
case class Some[+AJ(value: A) extends Option[A]
object None extends Option[Nothing]

The expression map.get(key) returns

» None if map does not contain the given key,
P> Some(x) if map associates the given key with the value x.

Decomposing Option

Since options are defined as case classes, they can be decomposed using
pattern matching:

def showCapital(country: String) = capitalOfCountry.get(country) match
case Some(capital) => capital
case None => ”"missing data”

showCapital(”US”) // ”Washington”
showCapital(”Andorra”) // ”missing data”

Options also support quite a few operations of the other collections.

| invite you to try them out!

Updating Maps

Functional updates of a map are done with the + and ++ operations:

m+ (k -=> v) The map that takes key ‘k' to value ‘v’
and is otherwise equal to ‘m'
m ++ kvs The map ‘'m' updated via ‘+' with all key/value
pairs in ‘kvs’
These operations are purely functional. For instance,

val m1 = Map("red” -> 1, "blue" -> 2) > ml = Map(red -> 1, blue -> 2)
val m2 = ml 4 ("blue” -> 3) > m2 = Map(red -> 1, blue -> 3)
m1l > Map(red -> 1, blue -> 2)

Sorted and GroupBy

Two useful operation of SQL queries in addition to for-expressions are
groupBy and orderBy.

orderBy on a collection can be expressed by sortWith and sorted.
val fruit = List(”apple”, ”pear”, ”orange”, ”pineapple”)

fruit.sortWith(_.length <
fruit.sorted // List(”apple”, ”orange”, ”pear”, ”pineap

.length) // List(”pear”, ”apple”, ”orange”, ”pinear

groupBy is available on Scala collections. It partitions a collection into a
map of collections according to a discriminator function f.

Example:
fruit.groupBy(_.head) //> Map(p -> List(pear, pineapple),

a a —> List(apple),
/7| o -> List(orange))

=PrL

Putting the Pieces Together

Principles of Functional Programming

Task

Phone keys have mnemonics assigned to them.

val mnemonics = Map(
!27 _> ”ABC”’ ,3) _> ”DEFYY, 747 _> ”GHI”, 75! _> YYJKL”’
’67 _>))MNO”,)7, _>)YPQRS”’ ,8’ _> ,’TUVU, ’9) _> ?YWXYZ”)
Assume you are given a dictionary words as a list of words.

Design a method encode such that
encode (phoneNumber)

produces all phrases of words that can serve as mnemonics for the phone
number.

Example: The phone number “7225247386" should have the mnemonic
Scala is fun as one element of the set of solution phrases.

Outline

class Coder(words: List[String]) {
val mnemonics = Map(...)

/** Maps a letter to the digit it represents x/
val charCode: Map[Char, Char] = ?7?

/** Maps a word to the digit string it can represent =*/
private def wordCode(word: String): String = ??7?

/** Maps a digit string to all words in the dictionary that represent it */
private val wordsForNum: Map[String, List[Stringl] = ???

/** All ways to encode a number as a list of words */
def encode(number: String): Set[List[String]] = ?7??

Implementation (1)

class Coder(words: List[Stringl) {
val mnemonics = Map(...)

/** Maps a letter to the digit it represents */
val charCode: Map[Char, Char] =

Implementation (1)

class Coder(words: List[String]) {
val mnemonics = Map(...)

/** Maps a letter to the digit it represents */
val charCode: Map[Char, Char] =
for (digit, str) <- mnemonics; ltr <- str yield ltr -> digit

Implementation (1)

class Coder(words: List[Stringl) {
val mnemonics = Map(...)

/** Maps a letter to the digit it represents */
val charCode: Map[Char, Char] =
for (digit, str) <- mnemonics; ltr <- str yield ltr -> digit

/** Maps a word to the digit string it can represent */
private def wordCode(word: String): String =

Implementation (1)

class Coder(words: List[String]) {
val mnemonics = Map(...)

/** Maps a letter to the digit it represents */
val charCode: Map[Char, Char] =
for (digit, str) <- mnemonics; ltr <- str yield ltr -> digit

/** Maps a word to the digit string it can represent */
private def wordCode(word: String): String = word.toUpperCase.map(charCode)

Implementation (1)

class Coder(words: List[Stringl) {
val mnemonics = Map(...)

/** Maps a letter to the digit it represents */
val charCode: Map[Char, Char] =
for (digit, str) <- mnemonics; ltr <- str yield ltr -> digit

/** Maps a word to the digit string it can represent */
private def wordCode(word: String): String = word.toUpperCase.map(charCode)

/** Maps a digit string to all words in the dictionary that represent it */
private val wordsForNum: Map[String, List[String]] =

Implementation (1)

class Coder(words: List[String]) {
val mnemonics = Map(...)

/** Maps a letter to the digit it represents */
val charCode: Map[Char, Char] =
for (digit, str) <- mnemonics; ltr <- str yield ltr -> digit

/** Maps a word to the digit string it can represent */
private def wordCode(word: String): String = word.toUpperCase.map(charCode)

/** Maps a digit string to all words in the dictionary that represent it */
private val wordsForNum: Map[String, List[String]] =
words. groupBy (wordCode) .withDefaultValue(Nil)

Implementation (2)

/** All ways to encode a number as a list of words */
def encode(number: String): Set[List[Stringl] =

Idea: use divide and conquer

Implementation (2)

/*x ALl ways to encode a number as a list of words */
def encode(number: String): Set[List[Stringl] =

if number.isEmpty then 777

else 777

Implementation (2)

/*x ALl ways to encode a number as a list of words */
def encode(number: String): Set[List[Stringl] =

if number.isEmpty then Set(Nil)

else 777

Implementation (2)

/** All ways to encode a number as a list of words */
def encode(number: String): Set[List[Stringl] =
if number.isEmpty then Set(Nil)
else
for
splitPoint <- (1 to number.length).toSet
word <- ?7?7?
rest <- 777?

yield word :: rest

Implementation (2)

/** All ways to encode a number as a list of words */
def encode(number: String): Set[List[Stringl] =
if number.isEmpty then Set(Nil)
else
for
splitPoint <- (1 to number.length).toSet
word <- wordsForNum(number.take(splitPoint))
rest <- 777

yield word :: rest

Implementation (2)

/** All ways to encode a number as a list of words */
def encode(number: String): Set[List[Stringl] =
if number.isEmpty then Set(Nil)
else
for
splitPoint <- (1 to number.length).toSet
word <- wordsForNum(number.take(splitPoint))
rest <- encode(number.drop(splitPoint))
yield word :: rest

Testing It

A test program:

@main def code(number: String) =
val coder = Coder(List(
”Scala”, ”Python”, ”Ruby”, ”C”,
”rocks”, ”socks”, ”sucks”, ”works”, ”pack”))
coder.encode(number) .map(_.mkString(” 7))

A sample run:

> scala code ”7225276257”
HashSet(Scala rocks, pack C rocks, pack C socks, Scala socks)

Background

This example was taken from:
Lutz Prechelt: An Empirical Comparison of Seven Programming
Languages. IEEE Computer 33(10): 23-29 (2000)

Tested with Tcl, Python, Perl, Rexx, Java, C++, C.

Code size medians:

» 100 loc for scripting languages
» 200-300 loc for the others

Benefits

Scala's immutable collections are:

| 2
>
| 2
>
>

easy to use: few steps to do the job.

concise: one word replaces a whole loop.

safe: type checker is really good at catching errors.

fast: collection ops are tuned, can be parallelized.

universal: one vocabulary to work on all kinds of collections.

This makes them an attractive tool for software development

